The Effect of Bulky Tertiary t-Butylphosphine or Tertiary Di-t-butylphosphine Ligands, L, on the Tendency of Complexes trans-[IrX(CO)L₂] (X = CI or Br) to undergo Oxidative Addition Reactions †

By B. L. Shaw * and R. E. Stainbank, School of Chemistry, The University, Leeds LS2 9JT

Oxidative addition reactions of sterically hindered complexes of the type trans-[IrX(CO)L₂] (X = Cl or Br), have been studied. trans-[IrX(CO)(PBu^tMe₂)₂] adds on a variety of molecules, e.g. Cl₂, H₂, O₂, CCl₄, CH₂:CH·CH₂Cl, AcCl, CICO₂Me, PhN₂+Cl⁻, PhSO₂Cl etc. Homologues of the type trans-[IrX(CO)(PBu^tR₂)₂], (R = Et, Pr^a or Bu^a), however, show a greatly reduced tendency to undergo oxidative addition for, although they will react with Cl₂. H₂, MeI, or O₂, they will not add on larger molecules such as CH₂:CH·CH₂Cl or AcCl. *trans*-[IrCl(CO)(PBu^t₂Me)₂] will add on Cl_2 or O_2 very slowly but the corresponding adducts with trans-[IrCl(CO)(PBut_2R)_2] (R = Et or Pr^a) would not form. The complexes trans- $[IrCl(CO)L_2]$ react with carbon monoxide in methanol to give the cations $[Ir(CO)_3L_2]^+$, isolated as the tetraphenylborate salts (L = PBu^tR₂; R = Me, Et, Prⁿ or Buⁿ). The configurations of most of the complexes have been determined by i.r. or ¹H n.m.r. spectroscopy.

THERE is much interest in the stereochemistry and mechanism of oxidative addition reactions of complexes of the type trans- $[IrX(CO)L_2]$ (X = Cl, Br or I; L = tertiary phosphine or tertiary arsine).1-3 There is also interest in the factors which affect the tendency of oxidative addition reactions to occur, e.g. how the tendency depends on the nature of the ligand, L. Thus it is known that n-alkyl tertiary phosphine-metal complexes undergo oxidative addition reactions more readily than the corresponding triphenylphosphine complexes.⁴ We have shown that there is a good correlation between the basicity of complexes of the type trans-[IrCl(CO)L₂] towards benzoic or acetic acids and the tendency of such complexes to undergo oxidative addition reactions.⁵ We have more recently shown that steric hindrance can greatly reduce the 'basicity' of complexes of the type trans-[IrCl(CO)L₂], e.g. with $L = PBu_{2}^{t}R$ (R = n-alkyl) there is no tendency to react with benzoic acid and even hydrochloric acid adds with difficulty.⁶ We found that the 'basicity' of the complexes of type trans- $[IrCl(CO)L_2]$ falls in the order ${\rm PMe_2Ph} \ > \ {\rm PBu^tMe_2} \ > \ {\rm PBu^tEt_2} \ > \ {\rm PBu^tPr_2^n} \ >$ $PBu_{2}^{t}Me > PBu_{2}^{t}Pr^{n} > PBu_{2}Et.^{6}$ We now describe a study of how these bulky tertiary t-butylphosphine or tertiary di-t-butylphosphine ligands, L, affect the tendency of complexes of type $trans-[IrX(CO)L_2]$ (X = Cl or Br) to undergo oxidative addition reactions.

We find that on increasing the size of the groups attached to phosphorus the tendency of the iridium(I) complexes to undergo oxidative addition is greatly

reduced. The results are conveniently discussed in three sections according to the tertiary phosphine, viz. $PBu^{t}Me_{2}$; $PBu^{t}R_{2}$ (R = Et, Prⁿ or Buⁿ); and $PBu^{t}{}_{2}R$ $(R = Me, Et, or Pr^n).$

The complex trans- $[IrCl(CO)(PBu^{t}Me_{2})_{2}]$ rapidly undergoes oxidative addition reactions with a variety CCl₃, \mathbf{of} chloro-compounds RCl (R = Cl,Η, CH₂=CH-CH₂, PhCH=CHCH₂, Ac, Me₂C=CHCO, CO₂Me, PhN₂, or PhSO₂) to give complexes [IrCl₂R(CO)(PBu^t- Me_2_2 of configuration (I) (L = PBu^tMe₂, X = Cl) (see Table 1 for analytical and molecular weight data, etc.). The ¹H n.m.r. spectra of these complexes show a 1:2:1 triplet for the t-butyl pattern and two 1:2:1triplets for the methyl resonances, indicating configuration (I)⁴ (see Table 2). Values of $\nu(CO)$ and v(Ir-Cl) are similar to those found for analogous complexes with other phosphines.¹⁻⁴ Values of v (Ir-H) and ν (C=O) (acetyl complexes) are also given in Table 2. trans-[IrCl(CO)(PBu^tMe₂)₂] reacts with methyl iodide in benzene to give [IrICl(Me)(CO)(PBu^tMe₂)₂] of configuration (III) (A = CH_3 , B = I, X = Cl, L = PBu^t -Me₂), *i.e. trans*-addition has occurred (similarly for X = Br). trans-Addition also occurs on adding acetyl chloride to trans-[IrBr(CO)(PBu^tMe₂)₂]. The stereochemistries are established from the i.r. and ¹H n.m.r. data (Table 2). It has been shown previously that additions of methyl or acetyl halides to iridium(I) species of the type trans- $[IrX(CO)L_2]$ are trans.^{2,4} trans-[IrX(CO)(PBu^tMe₂)₂] reacts with hydrogen gas

[†] No reprints available.

 ¹ L. Vaska, Accounts Chem. Res., 1968, 1, 335.
 ² J. P. Collman, Accounts Chem. Res., 1968, 1, 136.
 ³ J. Halpern, Accounts Chem. Res., 1970, 3, 386.

 ⁴ A. J. Deeming and B. L. Shaw, J. Chem. Soc. (A), 1969, 1128.
 ⁵ A. J. Deeming and B. L. Shaw, J. Chem. Soc. (A), 1969, 1802.

⁶ B. L. Shaw and R. E. Stainbank, J. Chem. Soc. (A), 1971, 3716.

TABLE 1

Colours, melting points, percentage yields, analytical and molecular weight data for complexes formed from trans-[IrX(CO)(PBu^tMe₂)₂], L = PBu^tMe₂

					Vield	1			
$[IrCl_{a}R(CO)L_{a}]$ (I)		Colour ^a	M.p. (°C)	(%)	С	H	X	M ^b	
R = Cl			ру w	ca. 280 ° 248-252 ª	81 89	28.05 (27.75) 26.25 (26.05)	5.2 (5.35) 5.0 (4.7)	19.4 (18.9) 27.2 (27.5)	552 (563)
CH ₂ PhC	CH:CH ₂ H:CHCH		w	190-194 $168-170^{d}$	80 44	33.6 (33.85) 41.1 (41.0)	$6 \cdot 1 (6 \cdot 2)$ $6 \cdot 35 (6 \cdot 1)$	12.3 (12.45) (10.85 (11.0))	$562 (568) \\ 629 (644)$
$CH_{3}CO$			w	294-296 d 165-170	97 88	31.8 (31.6) 34.55 (35.4)	5.85(5.85) 6.3(6.1)	12.2 (12.4)	569 (570)
$CH_{3}OCO$ PhN.		w br	ca. 275 ° 155	53 60	31.0 (30.7) 36.35 (36.1)	5.85(5.65) 5.65(5.6)	12·1 (12·1) 11·15 (11·2) ¢	583 (586)	
PhS	Ő ₂		w	235237 đ	74	33.9 (34.1)	5.2 (5.3)	10.95(10.6)	678 (668)
$[IrH_{2}X(CO)]$	L_2] (II)								
$\begin{array}{l} \mathbf{X} = \mathbf{Cl} \\ \mathbf{X} = \mathbf{Br} \end{array}$			w w	137—140 ª	90 74	$\begin{array}{ccc} 32{\cdot}05 & (31{\cdot}6) \\ 29{\cdot}3 & (29{\cdot}0) \end{array}$	6·3 (6·55) 14·5 (14·85)	$\begin{array}{c} 7 \cdot 0 & (7 \cdot 2) \\ 6 \cdot 1 & (6 \cdot 0) \end{array}$	527 (494)
[IrXAB(CO)	L_2] (III)								
A CH ₃ CH ₃ CH ₃ CO	B I I Cl	X Cl Br Br	w py w	298	79 85 46	26·4 (26·55) 25·05 (24·8) 28·7 (29·3)	5·25 (5·25) 4·9 (4·9) 5·35 (5·4)	$3.1 (3.15)^{f}$ $2.7 (2.75)^{f}$	633 (634)
$[IrX(O_2)(CC)]$)L ₂] (IV)								
$\begin{array}{l} \mathbf{X} = \mathbf{Cl} \\ \mathbf{X} = \mathbf{Br} \end{array}$			po o	119121 ª 119121 ª	69 84	$\begin{array}{ccc} {f 30{\cdot}05} & ({f 29{\cdot}8}) \ 27{\cdot}5 & ({f 27{\cdot}5}) \end{array}$	5·85 (5·75) 5·5 (5·3)	6·7 (6·75) 13·9 (14·1)	
[IrBrCl(allyl)(CO)L ₂] mixture of			w	225—230 °	77	31.05 (31.35)	5.7 (5.75)		612 (613)

^a py = Pale yellow, w = white, br = brick red, po = pale orange, o = orange. ^b Calculated values in parentheses. ^c Decomposes without melting. ^d With decomposition. ^e N = $4\cdot3$ ($4\cdot45\%$). ^f Number of ml of a standard mercuric nitrate solution required for 10 mg sample. ^e Br = $11\cdot5$ ($11\cdot8\%$), I = $19\cdot0$ ($18\cdot7\%$).

to give $[IrH_2X(CO)(PBu^tMe_2)_2]$ of configuration (II) (A = H, B = H, X = Cl or Br, L = PBu^tMe_2), *i.e. cis*-addition occurs as found previously for other complexes of the type *trans*- $[IrX(CO)L_2]$.¹⁻⁴ The configuration follows from the ¹H n.m.r. and i.r. data (see Table 2). *trans*- $[IrX(CO)(PBu^tMe_2)_2]$ will also take up molecular oxygen to give adducts $[IrX(O_2)(CO)-(PBu^tMe_2)_2]$. These dioxygen complexes almost certainly have configuration (IV) from the ¹H n.m.r. and i.r. data (Table 2); since these data are similar to those of complexes shown to have configuration (IV) by X-ray crystallography.^{7,8}

The behaviour of complexes of type trans-[IrX(CO)-(PBu^tMe₂)₂] towards oxidative addition is thus similar to that of trans-[IrX(CO)(PMe₂Ph)₂].⁴ The stereochemistry of the adducts in the two series are generally the same. One difference is in the behaviour towards allyl chloride in benzene solution: trans-[IrCl(CO)-(PMe₂Ph)₂] gives an adduct with cis-phosphines ⁹ whilst trans-[IrBr(CO)(PBu^tMe₂)₂] gives a mixture which contains at least one component with trans-phosphines, since a triplet t-butyl pattern is present in the ¹H n.m.r. spectrum.

We have attempted to prepare an isobutyliridium(III) complex ¹⁰ by eliminating carbon monoxide from the complexes $[IrCl_2(COCH=CMe_2)(CO)L_2]$ L = PBu^tMe₂ or PPhMe₂. Irradiation with u.v. light caused some decomposition and we could find no evidence for the formation of isobutenyl-iridium complexes.

There is a marked decrease in reactivity towards oxidative addition in going from trans-[IrX(CO)(PBu^tMe₂)₂] (X = Cl or Br) to higher homologues, trans-[IrX(CO)-⁹ A. J. Deeming and B. L. Shaw, J. Chem. Soc. (A), 1969, 1562.

¹⁰ A. J. Deeming, B. L. Shaw, and R. E. Stainbank, *J. Chem. Soc.* (A), 1971, 374.

 ⁷ S. J. La Placa and J. A. Ibers, J. Amer. Chem. Soc., 1965, 87, 2581.
 ⁸ J. A. McGinnety, R. J. Doedens, and J. A. Ibers, Inorg.

⁸ J. A. McGinnety, R. J. Doedens, and J. A. Ibers, *Inorg. Chem.*, 1967, **6**, 2243.

 $(PBu^{t}R_{2})_{2}$ (R = Et, Prⁿ, or Buⁿ). These higher homologues add on HX, Cl₂, H₂, or MeI, and also O₂ in the case of the PBu^tEt₂ or PBu^tBuⁿ₂ complexes, although they would not add on the larger molecules allyl chloride hydrogen or oxygen add slowly (over 7-20 h) but go essentially to completion, similarly with additions of methyl iodide (3-5 days at $ca. 20^{\circ}$). Hydrogen halides add rapidly, *i.e.* the equilibrium position is

TABLE 2

¹H N.m.r. and i.r. data for complexes formed from *trans*-[IrX(CO)L₂] L = PBu^tMe₂. τ Values ± 0.02 p.p.m., J values ± 0.1 Hz, t = triplet; n.m.r. spectra in deuteriochloroform except where indicated; i.r. frequencies (± 2 cm⁻¹), as KCl(Br) discs or chloroform solutions except where indicated

				t-Bı reson	utyl ance	Me ⁻ resor	thyl nance							
					$^{3}J(\mathrm{PH})$		$^{2}J(\mathrm{PH})$	Other	ν(CΞ	EO)		Other	r frequend	cies
				τ	₅/(PH)	τ	4/(PH)	ances "	Solid	Soln.	ν (Ir–Cl)		Solid	Soln.
[Ir	Cl_2R	$(CO)L_2$] (I)		5()		5()							
$\mathbf{R} =$	Cl			8.71t °	15.0	8·36t	8.4		2048s b	2023s	300, 329			
	CCl ₃			8.66t	14.5	8.2t	8.2		2050s	2045s	305, 278, 262			
	OTT .	OT 11 OT 1		0.70/	14.0	8·27t	8.8		2010s	0000-	901 971	(C-C)	1 000	1000
	CH ₂	сн.сн	2	8.72t	14.8	8.45+	8·1 7.0	A	20105	20205	301, 251	$\nu(C-C)$	1022W	1023W
	PhC	н:сно	ж.	8·73t	14.7	8.18t	8.6	в	2012s	2024s	299, 256	ν (C=C)	1634w	1631w
				0 100		8.43t	7.8	-			100, 100	.(
	CH ₃	CO		8.7t	16.1	8·19t	8.8	С	2040s	2049s	295, 235	ν(C=O)	1663m	1626s
						8∙4t	8 ∙0	_	2010s				1622s	
	(CH _s	3) ₂ C:CH	ICO	8.72t	15.6	8.2t	8.5	D	2030s	2045s	301, 238	v(C=O)	1624s	1626s
	CIT	000		0 774 6	15.0	8.47t	7.6	F	9049a b	9040-	200 956	$\nu(C=C)$	1080W	1585W
	CH8	000		8.11t v	15.0	8.47t	8.0	E.	20425 *	20495	309, 200	$\nu(C=0)$	10705.	10005
	PhN			8.81+ 0	14.7	8.21	8.2		2015s	2041s	308 253			
	1 1111	2		0.010		8.56t	7.9		20100	20110	000, 200			
	PhS	О,		8.72t °	14.9	8.32t	8.0		2058s b	2062s	314, 269			
CT -	TT 37		- /TT)											
[Ir.	H_2X	$(CO)L_2$] (11)					_						
$\mathbf{X} =$	Cl			9·1t d	14.9	8·37t	6.0	\mathbf{F}	1960s	1965s 4	254	v(Ir–H)	2220m	2183m 4
v	D.			0.11+4	14.6	8.42t	6·0	C	1069-	10650		(T LJ)	2082S	20665 *
A ==	Dr			9.110 .	14.0	8.38+	6.4	G	19045	19005		v(11-11)	2095s	2070s
						0.000	01						20003	20105
[Ir	XAE	B(CO)L	2] (III)											
Α		в	х											
СН3		I	C1	8.71t	14.5	7.9t	8.0	I	2014s	2016s	298			
		-	_			8.51t	8.0							
CH_3		1	Br	8.71t	14.2	7.81t	7.8	K	2016s	2010s				
CH	co	CL	Đ.	9.71+	14.7	8.08+	9.9	м	90400	9040a	226	w(C-O)	16920	1693-
C113	CO	CI	DI	0.110	14.4	8.3t	7.7	TAT	20405	20495	230	V(C=0)	10205	10205
						0.00	• •							
[Ir]	$X(O_2$	2)(CO)I	[12] (IV)											
$\mathbf{X} =$	C1			8·77t	13.3	8∙46t	7.4		1993s	2008s	299	v(Ir-O ₂)	824	
	_					8∙62t	7.8							
X ==	Br			8∙74t	14.6	8.34t	6.2		1999s	2004s		$\nu(1r-O_2)$	848	
						9.93t	0.4							
[Ir]	BrCl	(allyl)($CO L_2]$											
(m	ixtur	e of is	omers)	8·71t	14.6	е	е	N	2012s	2016s	299, 248	ν (C=C)	1622w	1618w
					3	H H2								
							1							
a	Ατ	(CH ₂)	7.39^{3}	(PH) = 0	5·6. BPt	C = C - C	$H_2 \tau_1 7.3$	4; $\tau_2 3.55$	(complex	κ); τ ₃ 3·	$71 \ {}^{3}J(\mathrm{PH}) = 4$	5.8; ${}^{3}f_{1.2} =$	$= 6.9; {}^{3}f_{3}$	$a_{3}=6.0.$
				⊘H3C										
C 7	(CH	L.CO) 7	-69. D	CH°C=	С— т. 3·12	comple	ex): τ. 8·1	6: τ. 8·36	41 =	1.3: 47.	a = 1.1 these	assignment	s to prote	ons (2) and
~ ,	(011	-,,		3			,,	-, -; -00	J 1, 3	- 5, 51,	3 1 1, 01000			() unit
and	1 3 a	are tent	ative ar	nd may h	be reversed	. Ετ(Ο	CH ₃ O) 6.52	2. Fτ(Ir	–H,trans-	CO) 18.	$08, {}^{2}J(P-H) =$	19·9; τ(Ir	–H, <i>trans</i> -	Cl) 28.84

or acetyl chloride. The failure to add on these larger molecules suggests that steric factors are important in controlling additions since allyl chloride and acetyl chloride in the absence of large steric effects are very susceptible to nucleophilic attack. Both kinetic and thermodynamic factors can govern the additions, *e.g.* reached within seconds, but the addition is readily reversed by bases.⁶

Analytical and molecular weight data, yields, *etc.* for these various complexes are given in Table 3; the complexes are further characterized by i.r. data in Table 4 and ¹H n.m.r. data in Table 5.

The complex trans-[IrCl(CO)(PBu^t₂Me)₂] adds on Cl₂, HCl, or O₂ but the additions of Cl₂ or O₂ are slow (several days for completion). The hydrogen chloride adducts of the complexes [IrCl(CO)(PBu^t₂R)₂] (R = Et or Prⁿ) have been described previously.⁶ We have however not been able to isolate other adducts of these very sterically hindered iridium(I) complexes; even with chlorine. This inertness is clearly due to steric factors.

Passage of carbon monoxide through a slurry of the complexes trans-[IrCl(CO)L₂] (L = PBu^tMe₂, PBu^tEt₂, PBu^tPrⁿ₂ or PBu^tBuⁿ₂) in methanol gave colourless

products. The pink solid had v(C=O) at 1996 and 1962 cm⁻¹ (Nujol) and 1980 cm⁻¹ (in chloroform solution).

EXPERIMENTAL

M.p.s were determined on a Kofler hot-stage apparatus and are corrected. Preparations involving free tertiary phosphines and d^8 metal complexes were carried out in a nitrogen or argon atmosphere.

Molecular weights were determined on a Hitachi-Perkin-Elmer 115 apparatus in chloroform (at 30 °C) or benzene (at 40 °C). I.r. spectra were recorded on a Grubb-Parsons GS4 spectrometer or on a Perkin-Elmer 457

TABLE 3

Colours, melting points, percentage yield, analytical and molecular weight data for the complexes formed from trans-[IrX(CO)L₂](X = Cl, or Br, L = a tertiary t-butylphosphine)

L	x	Colour ª	M.p. (°C)	Yield (%)	С	H	X	Mb
$[IrCl_3(CO)L_2]$ (I)								
$PBu^{t}Et_{2}$		ру	282 - 285	93	$32 \cdot 8 (33 \cdot 0)$	5.95 (6.20)	17.4 (17.20)	619 (626)
PBu ^t Pr ⁿ ₂		ру	171 - 174	74	$37 \cdot 45 (37 \cdot 35)$	6.90 (6.85)	$16 \cdot 1 \ (15 \cdot 75)$	675 (668)
$PBu^{t}Bu^{n}_{2}$		РУ	106-110	79	41.0 (41.05)	7.35(7.45)	14.65 (14.55)	731 (735)
r Du ₂ -Me		ро	208-210	90	30.3 (30.20)	0.0 (0.99)	10.00 (10.40)	647 (641)
$[IrH_2X(CO)L_2]$ (II)								
$PBu^{t}Et_{2}$	Cl	w	ء 148-150	84	37.5 (37.1)	7.3 (7.35)	6.3 (6.45)	553 (550)
PBu ^t Pr ⁿ ₂	Cl	ру		75		d		•
$PBu^{t}Pr^{n_{2}}$	Br	ру		65		d		
PBu'Bu ⁿ 2	CI	ру	e	е		С		
[IrIMeX(CO)L ₂] (III)								
$PBu^{\dagger}Et_{2}$	CI	w	188201	57	31.6(31.3)	6.0 (6.0)	$2.8(2.8)^{f}$	
$PBu^{t}Pr^{n_{2}}$	Cl	w	143 - 146	66	35.65(35.40)	6·6 (6·6)	$2.6(2.6)^{f}$	
$PBu^{t}Bu^{n}{}_{2}$	C1	w	143 - 147	91	38.80 (38.95)	7.05(7.15)	$2\cdot 3 \ (2\cdot 4)^{f}$	782 (802)
PBu ^t Bu ⁿ ₂	\mathbf{Br}	w	114119	82	36.9 (36.9)	6.6 (6.8)	$2{\cdot}25~(2{\cdot}3)$ f	851 (846)
$[IrCl(O_2)(CO)L_2]$ (IV)								
$PBu^{t}Et_{2}$		0	ء 133—137	45	$35 \cdot 25 (35 \cdot 2)$	6.55(6.6)	5.95 (6.10)	578 (580)
$PBu^{t}Bu^{n_{2}}$		о	ء 9498	82	43·5 (43·35)	7.85 (7.85)	4.95(5.10)	
$PBut_{2}Me^{-1}$		о	182—185 g	57	37.4 (37.50)	6·8 (6·95)	6.1 (5.85)	
$[Ir(CO)_{3}L_{2}]BPh_{4}$								
PBu ^t Me.		w	ء 143146	83	56.8(56.3)	6.2(6.5)		
PBu ^t Et ₂		w	ء 149—153 °	84	58.6(58.2)	6.7 (6.6)		
$PBu^{t}Pr_{2}^{n}$		рр	ء 145—147	92	59·7 (59·8)	7·05` (7·05)		
$PBu^{t}Bu^{n}_{2}$		$\mathbf{p}\mathbf{p}$	ء 131—133	90	61·2 (61·25)	7.4 (7.45)		

^a py = Pale yellow, po = pale orange, w = white, o = orange, pp = pale pink. ^b Calculated values in parentheses. ^c Decomposes on melting. ^d Unstable in the solid state, analytical figures not obtained. ^e Not isolated in the solid state. ^f No. of ml of a standard mercuric nitrate solution required for 10 mg of sample. ^e Decomposes without melting.

solutions from which, on addition of sodium tetraphenylboron, tricarbonyl complexes of type $[Ir(CO)_3L_2]$ -BPh₄ readily precipitated. Analytical, i.r., and ¹H n.m.r. data for these salts are given in the Tables. The complex ions probably have configuration (V) by analogy with $[Ir(CO)_3(PMe_2Ph)_2]^+$, etc.^{11,12} Similarly, passage of carbon monoxide through a methanolic slurry of trans- $[IrCl(CO)(PBut_2Me)_2]$ followed by the addition of sodium tetraphenylboron gave a yellow precipitate which quickly turned pink and later red. We could not isolate a stable pure substance from this reaction mixture and do not know the nature of the

¹¹ A. J. Deeming and B. L. Shaw, J. Chem. Soc. (A), 1970, 2705.

spectrometer, $(4000-450 \text{ cm}^{-1})$; and on Grubb-Parsons DB3/DN2 or DM4 spectrometers, $(400-200 \text{ cm}^{-1})$.

¹H N.m.r. spectra were recorded on Perkin-Elmer R10 or R12 60 MHz spectrometers at *ca.* 34 °C in dichloromethane, deuteriochloroform, or benzene with tetra-methylsilane as internal standard.

Trichloro(carbonyl)bis(t-butyldimethylphosphine)irid-

ium(III), Configuration (I).—A solution of chlorine (0.26 mmol) in carbon tetrachloride (0.31 ml) was added to a solution of *trans*-chloro(carbonyl)bis(t-butyldimethylphosphine)iridium(I) (0.128 g, 0.26 mmol) in chloroform (3 ml); the solution immediately becomes pale yellow. The solvent was then removed by evaporation under reduced

¹² M. J. Church, M. J. Mays, R. N. F. Simpson, and F. P. Stefanini, *J. Chem. Soc.* (A), 1970, 2909.

pressure to give the product which formed as *prisms* (0.117 g, 0.21 mmol) from dichloromethane-methanol.

The following adducts were prepared in a similar manner from the corresponding iridium(I) complex and the appropriate reagent (one molar equivalent was used unless stated otherwise). Unless stated otherwise, reactions were carried out in sodium-dried benzene and appeared to go to completion within two minutes (evidence of colour changes).

Trichloro(carbonyl)bis(t-butyldiethylphosphine)iridium(III), configuration (I),—prisms, (chloroform, 10 min). Trichloro-(carbonyl)bis(t-butyldi-n-propylphosphine)iridium(III), configuration (I),—prisms, (chloroform, 30 min). Trichloro-(carbonyl)bis(t-butyldi-n-butylphosphine)iridium(III), configuration (I),—prisms, (chloroform). Trichloro(carbonyl)bis(di-t-butylmethylphosphine)iridium(III), configuration (I), Chloroiodo(methyl)(carbonyl)bis(t-butyldimethylphosphine)iridium(III), configuration (III), - prisms. Bromoiodo (methyl)(carbonyl)bis(t-butyldimethylphosphine)iridium(III), configuration (III), - prisms. Chloroiodo(methyl)(carbonyl)bis-(t-butyldiethylphosphine)iridium(III), configuration (III), - prisms, (4 molar equivalents, 1 day). Chloriodo(methyl)-(carbonyl)bis(t-butyldi-n-propylphosphine)iridium(III), configuration (III), — prisms, (6 molar equivalents, 1 day). Chloroiodo(methyl)(carbonyl)bis(t-butyldi-n-butylphosphine)iridium(III), configuration (III), - prisms, (3 days). Bromoiodo(methyl)(carbonyl)bis(t-butyldi-n-butylphosphine)iridium(III), configuration (III), - prisms, (13 molar equivalents). Chloro(dioxygen)(carbonyl)bis(t-butyldimethylphosphine)iridium(III), configuration (IV), - prisms, (ethanol, Bromo(dioxygen)(carbonyl)bis(t-butyldimethylphos-10 h).

I.r. (in cm ⁻¹) data f	ior the c	omplexes for	med from tr	ans-[$IrX(CO)L_2$] (X = Cl or)	Br, $L = a$ terti	ary t-butyl	phosphine)
L	$\nu(C\equiv O)^{a}$			v(Ir-	·Cl) ^b	Other frequencies		
$[IrCl_3(CO)L_2]$ (I)	х	Solid	Solution	trans (C≡O)	trans (A)	Assignment	Solid	Solution
$\begin{array}{c} PBu^{t}Et_{2} \\ PBu^{t}Pr^{n}_{2} \\ PBu^{t}Bu^{n}_{2} \\ PBu^{t}Bu^{n}_{2} \\ PBu^{t}_{2}Me \end{array}$		2020s 2036s 2022s 2024s	2041s 2045s 2045s 2041s	297 303 297 300	$321 \cdot 5$ 321 $321 \cdot 5$ 322			
$[IrH_2X(CO)L_2]$ (II)								
$\mathrm{PBu^{t}Et}_{2}$	Cl	1962 s	1976s		266	v(Ir–H)	2195m 2080s	2186n 2083s
$\mathrm{PBu^tPr^n_2}$	Cl	1990s	1988s		264	ν (Ir-H) {	2184m 2078s 2100s	2182m 2085s
$PBu^tPr^{n_2}$	Br	1972s	1969s			v(Ir-H)	2224m 2085s	2174m 2079s
$\mathrm{PBu^tBu^n}_2$	Cl		С					
$[IrIMeX(CO)L_2]$ (III)								
$\operatorname{PBu^tEt}_2$ $\operatorname{PBu^tPr^n}_2$ $\operatorname{PBu^tBu^n}_2$ $\operatorname{PBu^tBu^n}_2$	Cl Cl Cl Br	1998s * 2015s 1996s 1999s	2012s 2012s † 2010s 2016s	296 299 297			1226m * 1232m 1229m 1220m	
$[IrCl(O_2)(CO)L_2]$ (IV)								
$PBu^{t}Et_{2}$ $PBu^{t}Bu^{n}_{2}$ $PBu^{t}_{2}Me$		1987s 1995s 2014s		301 301 318		$ u(Ir-O_2) $ $ u(Ir-O_2) $ $ u(Ir-O_2) $	$\begin{array}{c} 850\mathrm{m}\ 849\mathrm{m}\ d \end{array}$	
[Ir(CO) ₃ L ₂]BPh ₄								
$\mathrm{PBu^tMe_2}$		1980 1998	1996					
$PBu^{t}Et_{2}$		1980 1995	1988					
$\mathrm{PBu^tPr^{n}{}_2} \mathrm{PBu^tBu^n{}_2}$		1986 1975 1997	$\begin{array}{c} 1996 \\ 1990 \end{array}$					

TABLE 4

^a The media in which the measurements were taken are as follows: adducts with Cl_2 , Nujol, chloroform; H_2 , KCl(Br), benzene; MeI, KCl, chloroform; O_2 , KCl; $[Ir(CO)_3L_2]BPh_4$, Nujol, dichloromethane, except where indicated (* Nujol, † benzene). ^b In Nujol. ^c Complex not isolated; identified by its ¹H n.m.r. spectrum. ^d Masked by other bands in this region.

--prisms, (11 molar equivalents, chloroform, 3 days). Chlorodihydrido(carbonyl)bis(t-butyldi-methylphosphine)iridium(111), configuration (II),--prisms, (22 h). Bromodihydrido(carbonylbis(t-butyldi-methylphosphine)iridium(111), configuration (II), -- prisms, (20 h). Chlorodihydrido(carbonyl)bis(t-butyldiethylphosphine)iridium(111), configuration (II),-- prisms, (24 h). Chlorodihydrido(carbonyl)bis(t-butyldi-n-propylphosphine)iridium(111), configuration (II),-prisms, (19½ h). Bromodihydrido(carbonyl)bis(t-butyldi-npropylphosphine)iridium(111), configuration (II), -prisms, (20 h). Chlorodihydrido(carbonyl)bis(t-butyldi-nbis(t-butyldi-n-butylphosphine)iridium(111), configuration (II), -- prisms, (20 h). Chlorodihydrido(carbonyl)bis(t-butyldi-n-butylphosphine)iridium(111), configuration (II), -- oil, (16½ h). phine)iridium(III), configuration (IV), — prisms, (ethanol, 9 h). Chloro(dioxygen)(carbonyl)bis(t-butyldiethylphosphine)iridium(III), configuration (IV), — prisms, (ethanol, 7 h). Chloro(dioxygen)(carbonyl)bis(t-butyldi-n-butylphosphine)iridium(III), configuration (IV), — prisms, (ethanol, 8 h). Chloro(dioxygen)(carbonyl)bis(di-t-butylmethylphosphine)iridium(III), configuration (IV), — prisms, (ethanol, 4½ days). Dichloro(trichloromethyl)(carbonyl)bis(t-butyldimethylphosphine)iridium(III), configuration (I), — prisms, (chloroform). Dichloro(σ -allyl)(carbonyl)bis(t-butyldimethylphosphine)iridium(III), configuration (I), — prisms. Dichloro(cinnamyl)-(carbonyl)bis(t-butyldimethylphosphine)iridium(III), configuration (I), — prisms. Dichloro(acetyl)(carbonyl)bis(t-butyldimethylphosphine)iridium(III), configuration (I), — prisms. Dichloro(2-vinyl-3,3'-dimethylpropionyl)(carbonyl)bis(t-butyldimethylphosphine)iridium(III), configuration (I), — prisms. Dichloro(methoxycarbonyl)(carbonyl)bis(t-butyldimethylphosphine)iridium(III), configuration (I), — prisms. Dichloro-(phenylazo)(carbonyl)bis(t-butyldimethylphosphine)iridium-(III), configuration (I), — prisms. Dichloro(phenylsulphonyl)- phine)iridium(I) (0.248 g, 0.504 mmol) in methanol (8 ml) until a colourless solution was obtained (ca. 15 min). A solution of sodium tetraphenylboron (0.258 g, 0.754 mmol) was added. The white precipitate was recrystallised from dichloromethane-methanol to give the product as *prisms* (0.348 g, 0.418 mmol).

The following complexes were prepared similarly: tricarbonylbis(t-butyldiethylphosphine)iridium(1) tetra-

TABLE 5

¹H n.m.r. data ^a for the complexes formed from *trans*-[IrXCOL₂] (X = Cl or Br, L = a tertiary t-butylphosphine) (τ values ± 0.02 p.p.m., J values ± 0.1 Hz)

	х	Ţ	t-Butyl Resonance J(P-H) + J(P-H)	Assignment	Other Resonances τ	Coupling constam
$\begin{array}{c} PBu^{t}Et_{a}\\ PBu^{t}Pr^{a}_{a}\\ PBu^{t}Bu^{n}_{a}\\ PBu^{t}Bu^{n}_{a}\\ PBu^{t}_{a}Me \end{array}$		8.67t 8.64t ⁵ 8.67t 8.49t	13·8 13·6 13·7 13·9	(P–CH ₃)	8·3t	${}^{2}J(P-H) + {}^{4}J(P-H) = 9.6$
$[IrH_2X(CO)L_2]$ (II)						
$PBu^{t}Et_{2}$	Cl	8·92t °	13.7	(Ir-H1)(trans-Cl)	29.91t	${}^{2}J(P-H^{1}) = 13.0 d$
$\mathrm{PBu^tPr^n_2}$	Cl	8∙94t °	13.8	$(Ir-H^2)(trans-CO)$ $(Ir-H^1)(trans-CI)$ $(Ir-H^2)(trans-CO)$	18·54t 29·39t 18·16t	${}^{2}J(P-H^{2}) = 18\cdot 1$ ${}^{2}J(P-H^{1}) = 13\cdot 2^{e}$ ${}^{2}I(P-H^{2}) = 18\cdot 0$
$PBu^tPr^{n_2}$	Br	8.97t °	14.0	$(Ir - H^1)(trans-Br)$	28.72t	${}^{2}J(P-H^{1}) = 13\cdot3/$
$\mathrm{PBu^tBu^n}_2$	Cl	8∙93t °	13.9	(Ir-H ²)(trans-CO) (Ir-H ¹)(trans-Cl) (Ir-H ²)(trans-CO)	18.84t 29.34t 18.22t	${}^{2}J(P-H^{2}) = 17.8$ ${}^{2}J(P-H^{1}) = 13.0$ ${}^{2}J(P-H^{2}) = 17.8$
[IrIMeX(CO)L ₂] (III)						
PBu ^t Et ₂ PBu ^t Pr ⁿ ₂ PBu ^t Bu ⁿ ₂ PBu ^t Bu ⁿ ₂	Cl Cl Cl Br	8.67t° 8.71t ^b 8.67t ^b 8.67t	13·3 13·3 13·0 13·2	$(Ir-CH_3)$ $(Ir-CH_3)$ $(Ir-CH_3)$ $(Ir-CH_3)$	8.80t 9.03t 8.81t 8.74t	${}^{3}J(P-H) = 3.7$ ${}^{3}J(P-H) = h$ ${}^{3}J(P-H) = 4.9$ ${}^{3}J(P-H) = 5.3$
$[IrCl(O_2)(CO)L_2]$ (IV)						
PBu ^t Et ₂ PBu ^t Bu ⁿ 2 PBu ^t 2Me		8.71t 8.71t 8.59t 8.62t	13·8 13·1 13·9 13·7	(P–CH ₃)	j	
$[Ir(CO)_{3}L_{2}]BPh_{4}$						
PBu ^t Me ₂ PBu ^t Et ₂ PBu ^t Pr ⁿ ₂ PBu ^t Bu ⁿ		8·86t 8·78t 8·78t 8·78t 8·76t	17.7 16.1 15.2 16.2	(P-CH ₃)	8·21t	${}^{2}J(P-H) + {}^{4}J(P-H) = 7.5$

^a In dichloromethane solution except where indicated; t = triplet. ^b In deuteriochloroform solution. ^c In benzene solution. ^d ${}^{2}J(H-H) = 5 \cdot 1$. ${}^{e}J(H-H) = 5 \cdot 3$. ${}^{f}{}^{2}J(H-H) = 5 \cdot 1$. ^b Masked by n-propyl part of spectrum. ^j Masked by t-butyl part of spectrum.

(carbonyl)bis(t-butyldimethylphosphine)iridium(III), configuration (I), — prisms. Bromochloro(acetyl)(carbonyl)bis-(t-butyldimethylphosphine)iridium(III), configuration (III), — prisms. Dichloro(σ-allyl)(carbonyl)bis(t-butyldimethylphosphine)iridium(III), (mixture of isomers, see text), — prisms.

Tricarbonylbis(t-butyldimethylphosphine)iridium(1) Tetraphenylboron.—Carbon monoxide was bubbled through a slurry of trans-chloro(carbonyl)bis(t-butyldimethylphosphenylboron, tricarbonylbis(t-butyldi-n-propylphosphine)iridium(I) tetraphenylboron, tricarbonylbis(t-butyldi-nbutylphosphine)iridium(I) tetraphenylboron, and tricarbonylbis(di-t-butylmethylphosphine)iridium(I) tetraphenylboron.

We thank the S.R.C. for a maintenance award (to R. E. S.).

[1/1649 Received, September 9th, 1971]